BMI, Ventricular Remodeling, and Recovery in PPCM

Esa Davis, MD
Associate Professor
For the IPAC Investigators

University of Pittsburgh Medical Center

No disclosures necessary
Obesity, Metabolic Syndrome and the Maternal CV outcomes

- **Metabolic syndrome, diabetes increase CV risk**

- **Increasingly investigated in maternal PP outcomes**

- A “Cardiomyopathy of Obesity” postulated but does it indeed exist?
Investigation of Pregnancy Associated Cardiomyopathy: (IPAC)

• Prospective investigation, 100 women newly diagnosed with PPCM

• Clinical, biomarker and genetics predictors of recovery

• Network of 30 centers http://www.peripartumcmnetwork.pitt.edu
Hypothesis (Dr. Davis):

- Adverse Association of Maternal BMI with Recovery in PPCM
- Biomarkers associated with increase BMI (leptin) would adversely impact recovery
- Does BMI or associated biomarkers influence racial differences in outcomes?
Method:

• Compared by BMI at entry: Obese (BMI>30), Overweight (25-30) and normal/underweight (<25)

• Biomarkers: correlation with BMI, mean levels in recovered vs not, and changes in LVEF by tertiles

• Relationship of BMI, Leptin, LVEDD compared by multivariate and mediation analysis
IPAC Cohort (n=100)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>30 ± 6 (18-43)</td>
</tr>
<tr>
<td>Gravida</td>
<td>2.8 ± 1.9 (1-10)</td>
</tr>
<tr>
<td>Para</td>
<td>2.2 ± 1.4 (1-6)</td>
</tr>
<tr>
<td>Race (W / B / A / Other)</td>
<td>65 / 30 / 1 / 4</td>
</tr>
<tr>
<td>NYHA Class (1-4)</td>
<td>12 / 47 / 24 / 17</td>
</tr>
<tr>
<td>BP (sys)</td>
<td>112 ± 17</td>
</tr>
<tr>
<td>BP (dia)</td>
<td>70 ± 13</td>
</tr>
<tr>
<td>beta blockers (entry)</td>
<td>88%</td>
</tr>
<tr>
<td>ACEI/ARB (entry)</td>
<td>81%</td>
</tr>
<tr>
<td>Days post partum</td>
<td>31 ± 24 (0-91)</td>
</tr>
</tbody>
</table>
LVEF over time: normal or under (BMI<25), overweight (25 to 29.9), obese (BMI≥30)

* p=0.40
* p=0.001
* p=0.01
* p=0.03

Davis, AHA, 2015
Biomarkers: Metabolic

Leptin: strong correlation with BMI

<table>
<thead>
<tr>
<th></th>
<th>Pearson</th>
<th>Spearman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin</td>
<td>r 0.484</td>
<td>0.558</td>
</tr>
<tr>
<td></td>
<td>p 0.000001</td>
<td>0.0000001</td>
</tr>
<tr>
<td>adiponectin</td>
<td>r -0.159</td>
<td>-0.201</td>
</tr>
<tr>
<td></td>
<td>p 0.123</td>
<td>0.051</td>
</tr>
<tr>
<td>oxLDL</td>
<td>r 0.174</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>p 0.092</td>
<td>0.287</td>
</tr>
<tr>
<td>sFAS</td>
<td>r 0.215</td>
<td>0.175</td>
</tr>
<tr>
<td></td>
<td>p 0.036</td>
<td>0.090</td>
</tr>
<tr>
<td>TNF</td>
<td>r 0.173</td>
<td>0.788</td>
</tr>
<tr>
<td></td>
<td>p 0.093</td>
<td>0.053</td>
</tr>
</tbody>
</table>
Leptin:

- 16 KD hormone secreted by adipose tissue
- Promotes vascular inflammation, oxidative stress and vascular smooth cell proliferation.
- Levels increase in HF subjects
Leptin by Race, Diabetes, and Multiple Birth

- **Diabetes**: 21,856 (±19,790) vs. 20,878 (±20,515)
 - *p*=0.01

- **Black race**: 38,534 (±27,542) vs. 30,747 (±22,045)
 - *p*=0.04

- **Multiple birth**: 26,323 (±22,045) vs. 13,644 (±22,045)
 - *p*=0.02
Leptin (ng/ml) significantly lower in subjects who recovered (final LVEF ≥ 0.50)

<table>
<thead>
<tr>
<th></th>
<th>No Recovery</th>
<th>Recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin (ng/ml)</td>
<td>33 ± 23</td>
<td>20 ± 19</td>
</tr>
</tbody>
</table>

$n=31$ for no recovery, $n=64$ for recovered

$p=0.005$

Davis, AHA, 2015
LVEDD and LVESD for all patients by Leptin Tertiles

- LVEDd: 5.5, 5.5, 5.9
- LVESd: 4.4, 4.6, 4.9

p=0.008 for LVEDd
p=0.015 for LVESd

Davis, AHA, 2015
Recovery of LVEF by Leptin level (overall tertiles)

- **baseline**: Low (000 - 9500) = 0.35 ± 0.09, Mid (9501 - 26000) = 0.42 ± 0.12, High (>26000) = 0.41 ± 0.11
- **2 month**: Low = 0.53 ± 0.10, Mid = 0.53 ± 0.12, High = 0.49 ± 0.11
- **6 month**: Low = 0.57 ± 0.08, Mid = 0.52 ± 0.09, High = 0.51 ± 0.10
- **12 mon**: Low = 0.56 ± 0.08, Mid = 0.53 ± 0.09, High = 0.51 ± 0.08
- **last EF**: Low = 0.56 ± 0.09, Mid = 0.53 ± 0.09, High = 0.51 ± 0.09

Significance levels:
- p=0.97 (baseline)
- p=0.04 (2 month)
- p=0.19 (6 month)
- p=0.048 (12 mon)
- p=0.04 (last EF)
LVEDD by BMI and Race

Mean LVEDD (cm)

- Total: P<0.001
- White: P<0.001
- Black: P=0.03
Relationship: BMI/LVEDD

Overall: $p=0.00002$, Constant=46.262, $B1=0.350$

Black: $p=0.024$
Constant=46.630, $B1=-0.384$

Non-Black: $p=0.001$
Constant=46.694, $B1=0.313$
Relationship of BMI, LVEDD, Leptin and Recovery

BMI

LVEDD

LVEF 12 mo
Relationship of Leptin/BMI

Overall: $p < 0.000001$, Constant -26409.67, $B_1 = 1803$

Black: $p = 0.000001$
Constant -47927.46
$B_1 = 2652$

Non-Black: $p = 0.000001$
Constant -15989.013
$B_1 = 1354$
Relationship of BMI, LVEDD, Leptin and Recovery

BMI → LVEDD → LVEF 12 mo
Relationship of BMI, LVEDD, Leptin and Recovery

BMI → Leptin

LVEDD → ?

LVEF 12 mo → LVEDD
BMI, LVEDD, and recovery in PPCM

- In IPAC, a higher BMI at entry was associated with a lower 12 month LVEF.

- This is the first study to indicate a role for obesity in the formation of non-ischemic cardiomyopathy.

- BMI was tightly correlated with LVEDD, and the impact of BMI is primarily mediated though an impact on LV remodeling.
Leptin, BMI and remodeling

- Leptin levels are tightly correlated with BMI.
- Leptin levels are higher in Blacks and higher in subjects who do not recover.
- Role as a mediator of ventricular remodeling less certain.
Peripartum Cardiomyopathy Network (PCN)

- http://www.peripartumcmnetwork.pitt.edu
- mcnamaradadm@upmc.edu